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Supervision in Unsupervised Learning
• What can we learn from a random (though arbitrarily large) set of images?

‣ Not much unless we make some assumptions

• Shifting supervision from per-sample labeling to specifying data properties 

‣ More powerful than expected! 

‣ Sufficient to obtain interpretable representations such as: object 
segmentation, 3D reconstruction, viewpoint estimation, landmark 
detection etc

6
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Unsupervised 3D Estimation
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Self-Supervised Learning
• The objective is to build features  so that  

 
 
 
 
is a good approximation of    for several tasks (and corresponding 
labels)

ϕ

p(y |x)

• Ideally,    should be such that   can be “simple” (otherwise    
would be a trivial solution), e.g., a shallow neural network

ϕ p(y |ϕ) ϕ = x
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Feature Design

• One principle to design  is to reduce the dimensionality of the data  
while imposing the reconstructibility of  from  (possible because natural 
images are a small subset of all images)

ϕ x
x ϕ

‣ This leads to Autoencoders (and their variations, such as denoising AEs)

• Another principle is to design  such that it defines an  distance that is 
related to the high-level attributes* of the data; with such features a simple 
classifier or regressor should suffice

ϕ ℓ2

13

*Similar concept as the global structure described by Van den Oord et al, Contrastive Predictive Coding, 2018
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Attributes
• What are attributes?

• We consider attributes that are statistics of random variables 
that are based on a hierarchy of other simpler random 
variables  this is what neural networks models build→

• The pretext-task allows to influence what attributes features 
should be invariant to and discriminate

• Example: A simple local attribute is the color histogram; it is 
the distribution of single pixels seen as independent samples

14
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Global vs Local Attributes
• Original data 

 

• Images where the local statistics are the same, but the global ones are not 
 

• Supervised learning features do not distinguish well between the two sets

• Do we know what a model uses to solve a supervised task?  Example shows 
that mid-range texture* classification is sufficient to solve the supervised task

→

15

*See Jenni et al, Steering Self-Supervised Feature Learning Beyond Local Pixel Statistics, 2020 and  
  Geirhos et al, Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness, 2018
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Pretext-Tasks and Attributes 
•  on features defines a new distance between images 

 
 
 

ℓ2

• How does the pretext-task affect this distance and which attributes does 
this distance relate to?

‣ The pretext-task builds features that can distinguish transformed 
versions of the data  these transformations define the attributes→

16

ℓ2
d(           ,           )= |ϕ(x1) − ϕ(x2) |
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Discriminative Self-SL methods Aligning Self-SL methods

explicit 
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explicit 
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implicit 
attraction

implicit 
repulsion

All Self-SL methods define some heuristic principle 
 This is the Unsupervised Learning alternative to labeling
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Reconstructibility
• Features should allow the reconstruction of a data sample 

from its context or other transformed versions of that sample

• Can be related to denoising AEs  Features are 
encouraged to be invariant to the added “noise”

→

• Aligning Self-SL: Images which differ by the transformation 
used in the pretext-task are mapped to similar features 
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*D. Pathak et al, Context encoders: Feature learning by inpainting, 2016
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Spatial Configuration of Parts
• Features of object parts must be distinguishable from 

those of other parts within the same image

• Discriminative Self-SL: No explicit constraint to group 
features other than the dimensionality reduction due to 
the neural network architecture

• Alignment might occur due to other mechanisms: E.g., 
the network architecture might encourage some form of 
alignment or the jittering used to sample the parts might 
facilitate some transformation invariance

19

*Doersch et al 2015, Noroozi and Favaro 2016, Mundhenk et al. 2018, Noroozi et al 2018
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Changing Only Global Attributes 
• Train a network to modify only the global attributes (e.g., 

missing face, disconnected limbs)

• Discriminative Self-SL: Features of real objects should 
be distinguishable from features of unrealistic ones

• Conjecture: Features of images with different global 
attributes are pushed away from each other; no 
constraint exists between images with similar global 
attributes

20
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Image Rotations
• Discriminative Self-SL: Features should allow the 

discrimination of rotated images

• What allows the identification of the orientation?

• If orientation can be determined through local patterns 
(e.g., faces), then features only need to discriminate local 
patterns 
 

21

S. Gidaris et al, Unsupervised Representation Learning by Predicting Image Rotations. 2018
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Contrastive Learning, Instance 
Classification and Data Augmentation

• Aligning Self-SL: Pretext-task explicitly defines which 
images are similar based on data augmentation

• Other mechanisms to separate features (e.g., entropy 
or simply separate each instance from all other data) 

• Network and optimization design provide non trivial 
performance boost (e.g., large minibatches, 
contrastive learning, additional network “head”) 

22

*Exemplar-CNN, SimCLR, MoCo, Deep Clustering, SeLa, SwAV 
 Noroozi et al, Representation Learning by Learning to Count, 2017 
 Wang and Gupta, Unsupervised Learning of Visual Representations Using Videos, 2015 



Impact of the Model Architecture

• The network architecture 
(hierarchy) is also important 

• SimCLR seems to benefit from 
deep models and long training 
more than SL

23

Chen et al, A Simple Framework for Contrastive Learning of Visual Representations, 2020



Impact of the Model Architecture

• The network architecture 
(hierarchy) is also important 

• SimCLR seems to benefit from 
deep models and long training 
more than SL

23

Chen et al, A Simple Framework for Contrastive Learning of Visual Representations, 2020



Impact of Optimization and 
Cost Functions

• As shown in the lottery ticket papers* how we handle the weight 
initialization may play a big role in the final features 

24

*Frankle and Carbin, The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, 2015



Impact of Optimization and 
Cost Functions

• As shown in the lottery ticket papers* how we handle the weight 
initialization may play a big role in the final features 

24

*Frankle and Carbin, The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, 2015



Impact of Optimization and 
Cost Functions

• As shown in the lottery ticket papers* how we handle the weight 
initialization may play a big role in the final features 

‣ For example, SeLa or DeepCluster might favor a better optimization of 
the weights by adapting to the initialization of the network

24

*Frankle and Carbin, The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, 2015



Impact of Optimization and 
Cost Functions

• As shown in the lottery ticket papers* how we handle the weight 
initialization may play a big role in the final features 

‣ For example, SeLa or DeepCluster might favor a better optimization of 
the weights by adapting to the initialization of the network

• Losses alone may also play a role (see e.g., the comparison by Khosla et 
al, Supervised Contrastive Learning, 2020 and analysis of Wang and Isola, 
Understanding Contrastive Representation Learning through Alignment 
and Uniformity on the Hypersphere, 2020)

24

*Frankle and Carbin, The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, 2015
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