

Beyond Self-Supervised Representation Learning

Andrew Zisserman

August 2020

What is Self-Supervision?

- A form of unsupervised learning where the data provides the supervision
- In general, withhold some part of the data, and task the network with predicting it
- This defines a pre-text task (or a proxy loss), and the network is forced to learn what we really care about, e.g. a semantic representation, in order to solve it
- We can also train networks for tasks directly, beyond learning data representations

Outline

Self-supervised learning in three parts:

1. Where are we now with representation learning?

2. Beyond representation learning – applicable tasks

3. Roadmap – the three phases of self-supervised learning

Part I

Where are we now with representation learning?

"Classical" Self-supervised learning

- 1. Image representation: self-supervised training on ImageNet using a proxy task
- 2. Supervised training of network for downstream task either by linear probe or initialization for fine tuning, e.g. for PASCAL VOC object category detection
- Example proxy tasks: Context, Jigsaw, Colourization, Exemplars, RotNet, Clustering, CPC, SimCLR, MoCo, BYOL
- Surpass performance of strong supervision (training with class labels) on a number of downstream tasks, e.g.
 - PASCAL VOC segmentation, object detection
 - NYU depth, ...

"Classical" Self-supervised learning – video

- 1. Video representation: self-supervised training on Kinetics using a proxy task (only visual domain)
- 2. Supervised training of network for downstream task either by linear probe or fine tuning, e.g. for Action classification on UCF-101 or HMDB51
- Example proxy tasks: Slowness, Shuffle&Learn, Order, Odd-One-Out, AoT, ST-Puzzle, DynamoNet, DPC, CBT, SpeedNet, MemDPC, CoCLR
- Approaching the performance of strong supervision on downstream tasks

Part II

Beyond representation learning – applicable tasks

Outline

Traditional: learn data representation with proxy task using self-supervision, then linear probe or finetune for downstream task using supervision

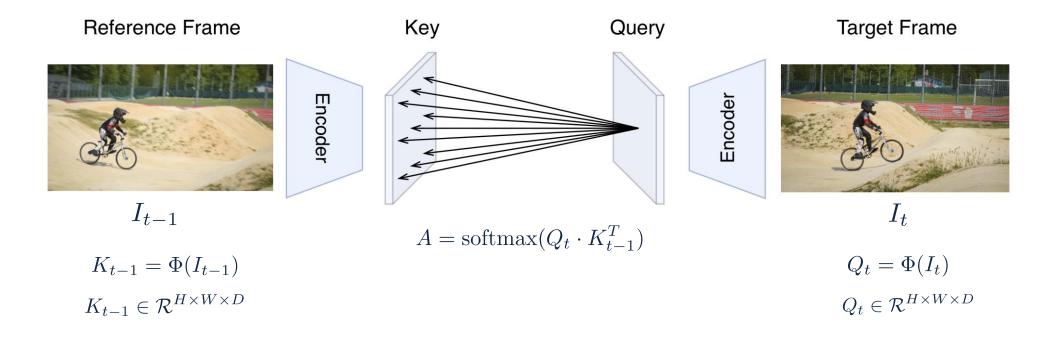
Instead, train for an applicable task directly using self-supervision

Illustrate with three example tasks on video:

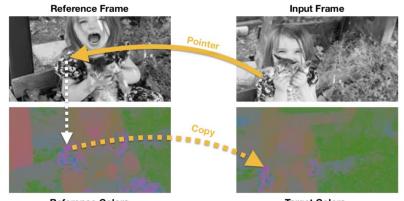
- 1. Object tracking in videos
- 2. Audio-visual joint embedding and localization
- 3. Obtain discrete audio-visual objects

Applicable task 1: Self-supervised Learning for Video Object Tracking

- Tracking can be solved by learning the pixelwise correspondence between consecutive frames
- Use an attention mechanism between spatial features of each frame to determine a soft correspondence



Applicable task 1: Self-supervised Learning for Video Object Tracking

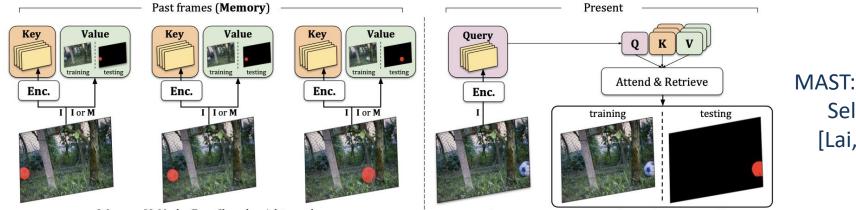


Reference Colors

Target Colors

Tracking Emerges by Colorizing Videos [Vondrick *et al.* ECCV 2018]

Learning Correspondence from the Cycle-consistency of Time [Wang, Jabri & Efros, CVPR2019]



MAST: A Memory-Augmented Self-supervised Tracker [Lai, Lu & Xie, CVPR2020]

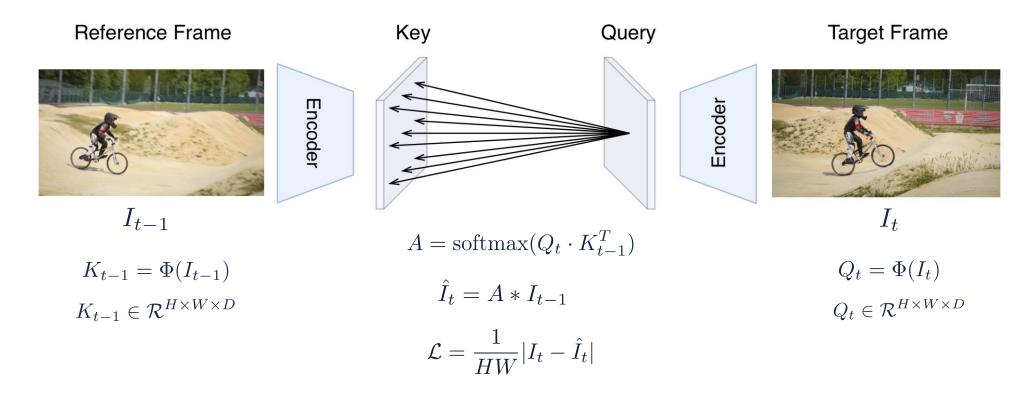
I: Image M: Mask Enc.: Shared-weight encoder

Target frame

Prediction (Image or mask)

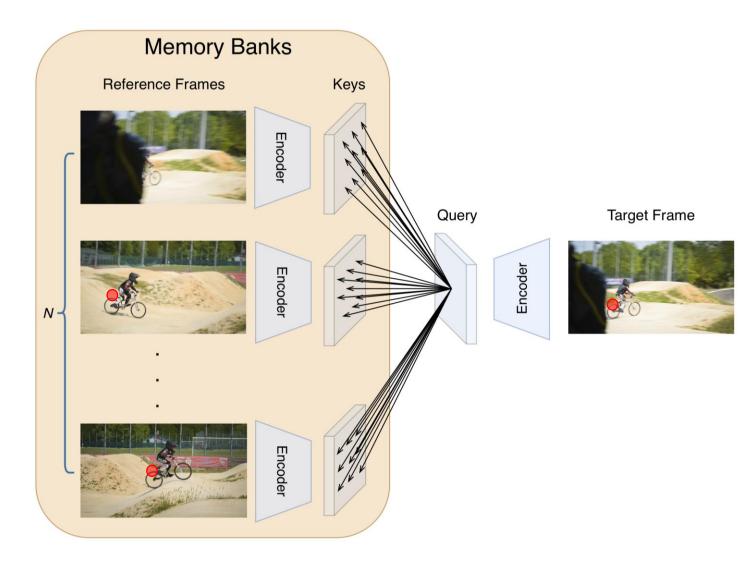
Applicable task 1: Self-supervised Learning for Video Object Tracking

- Use an attention mechanism between spatial features of each frame to determine a soft correspondence
- Learn by reconstructing a target frame by copying pixels from a previous frame or by cycle consistency



reconstruction

Memory-augmented Self-supervised Tracking



• Construct the memory bank with multiple reference frames, affinity matrix becomes:

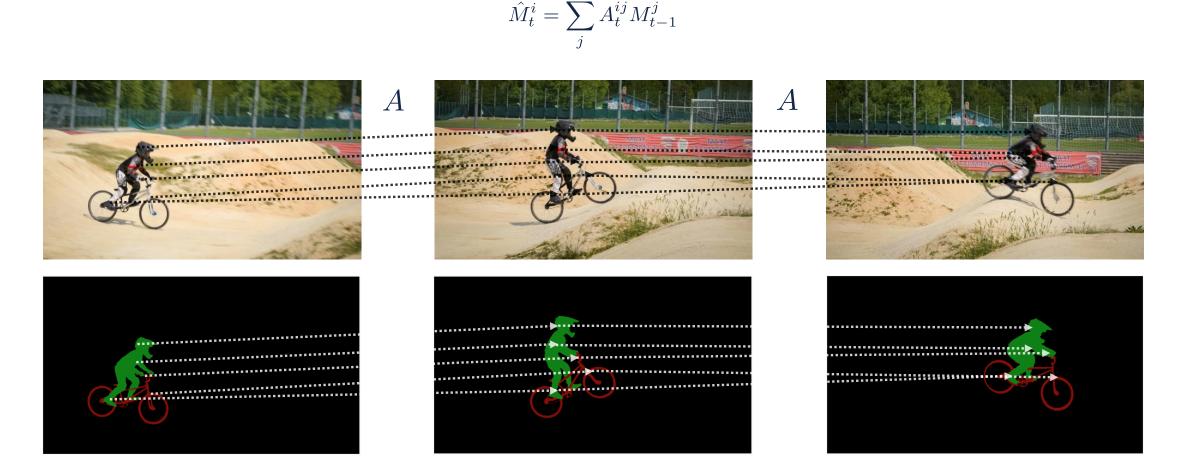
 $A \in \mathcal{R}^{HW \times HWN}$ $\hat{I}_t = A * [I_{t-N}, ..., I_{t-1}]$

• Effectively handle the occlusion problems, reducing the tracker drift.

MAST: A Memory-Augmented Self-supervised Tracker, Lai, Lu & Xie, CVPR2020

How to achieve Self-supervised Tracking ?

• Propagate instance masks from previous frames:



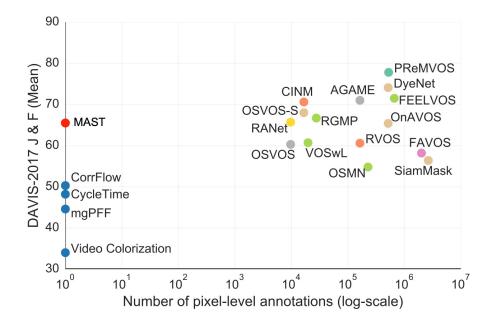
MAST: A Memory-Augmented Self-supervised Tracker, Lai, Lu & Xie, CVPR2020

Qualitative Results

MAST: A Memory-Augmented Self-supervised Tracker, Lai, Lu & Xie, CVPR2020

What has been achieved ?

- Benchmark on the public DAVIS Video Segmentation Dataset.
- Over the last two years, self-supervised approaches have shown great promise on the task of dense tracking, outperforming many supervised ones, trained with millions of expensive pixel-wise segmentation annotations.



MAST: A Memory-Augmented Self-supervised Tracker, Lai, Lu & Xie, CVPR2020

Audio-Visual Co-supervision

Objective: use vision and sound to learn from each other

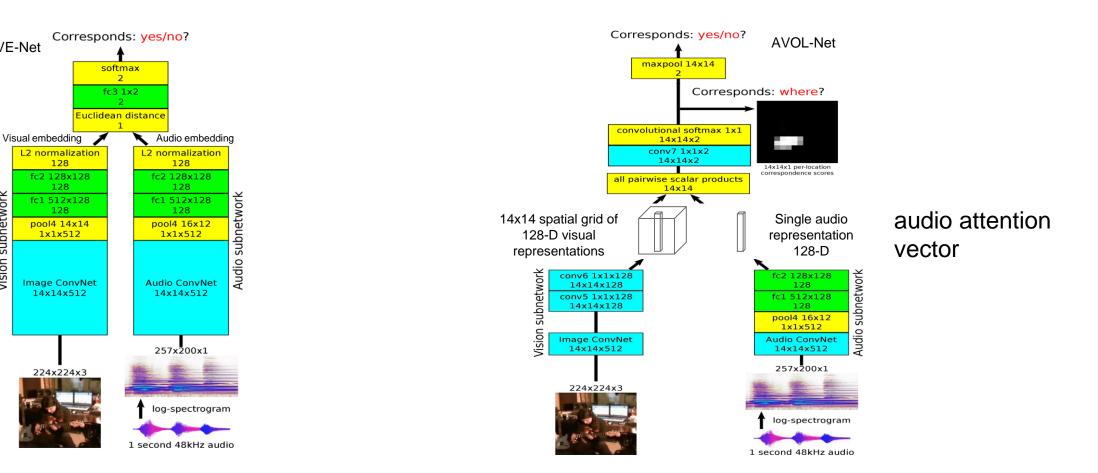
- Sound and frames are (i); synchronized, and (ii) semantically consistent
- Two types of proxy task:
 - 1. Predict audio-visual correspondence
 - 2. Predict audio-visual synchronization

Applicable task 2: Audio-visual joint embedding and localization

AVE-Net

Vision subnetwork

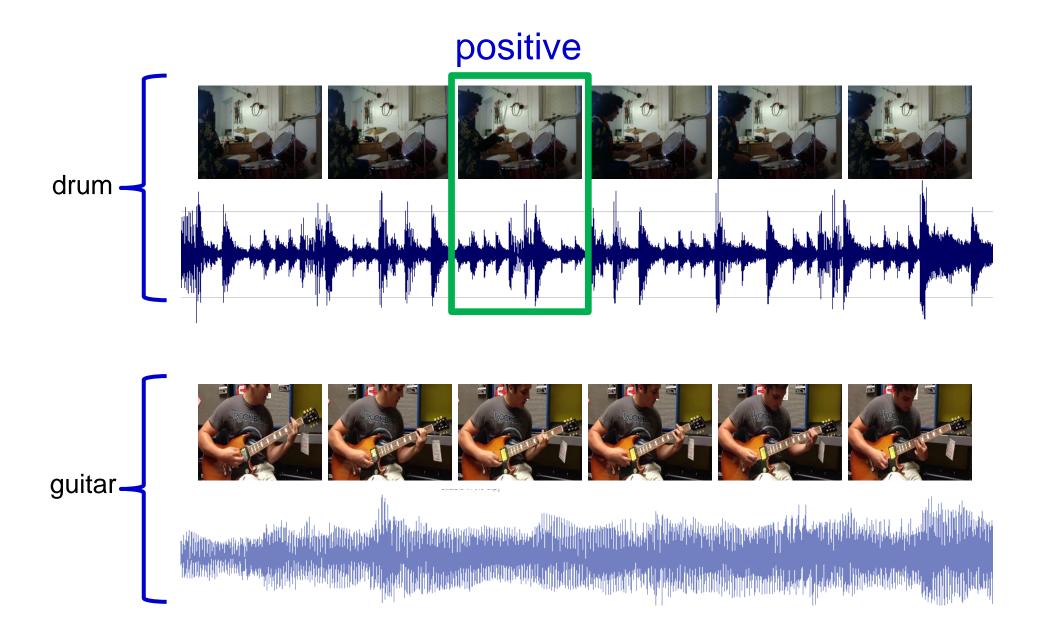




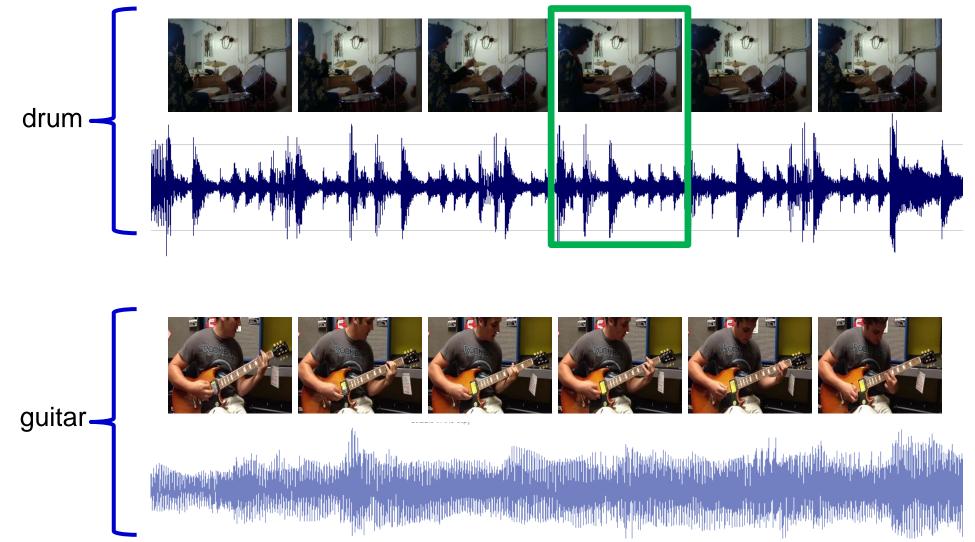
Audio-Visual Co-supervision

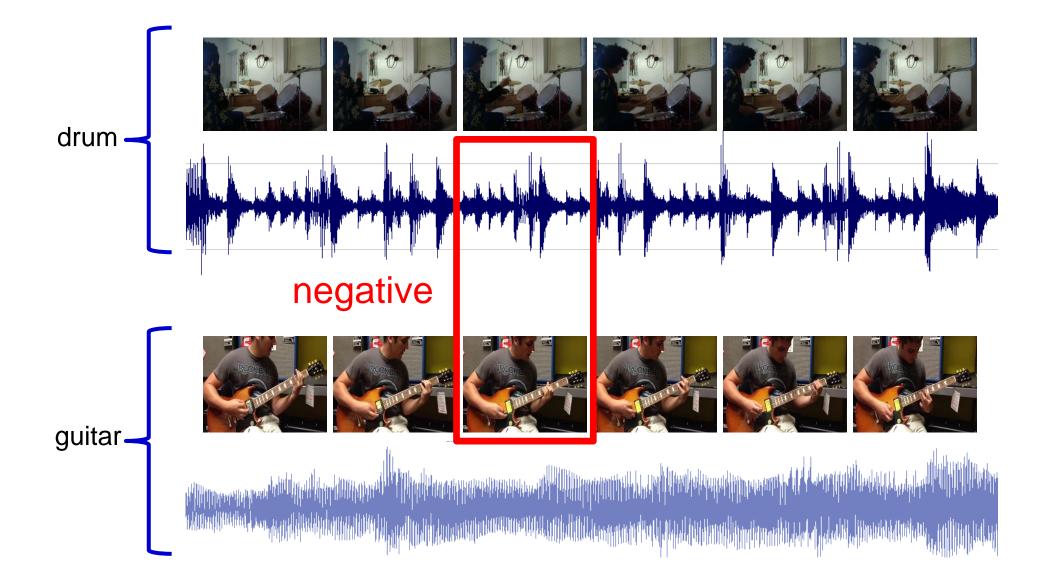
Train a network to predict if **image** and audio clip correspond

Correspond?

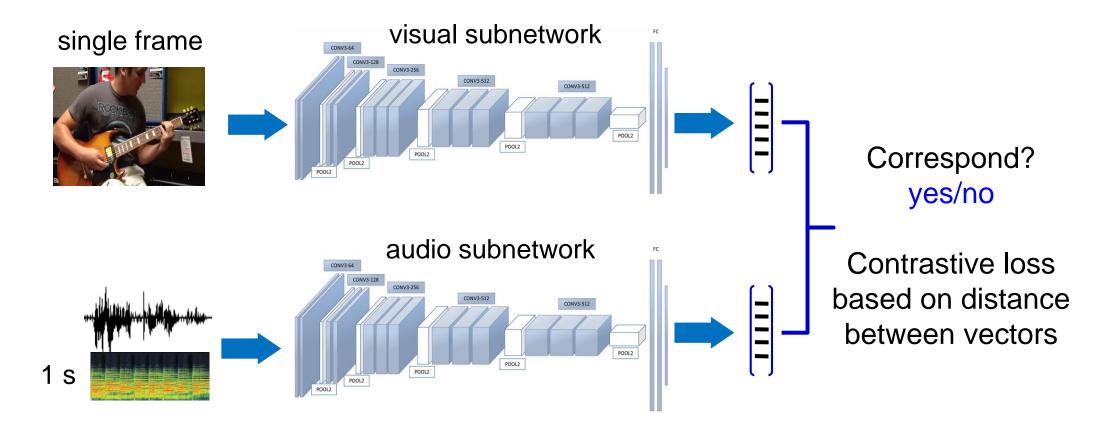


positive





Audio-Visual Embedding (AVE-Net)



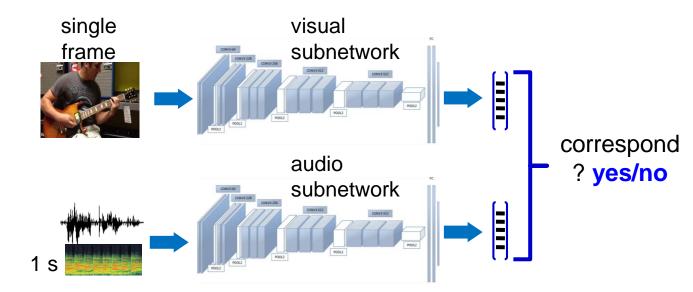
Distance between audio and visual vectors:

- **Small:** AV from the same place in a video (**Positives**)
- Large: AV from different videos (Negatives)

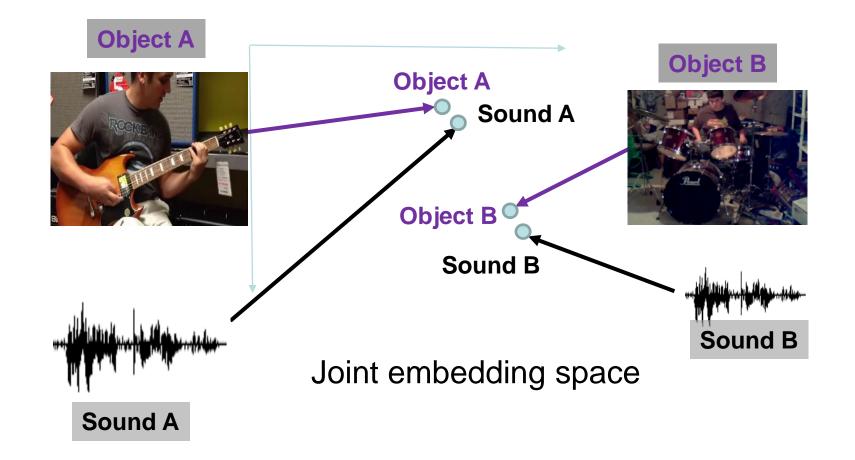
Train network from scratch

What has been learnt?

- Good representations
 - Visual features
 - Audio features
- Intra- and cross-modal retrieval
 - Aligned audio and visual embeddings



Joint Embedding



Query on audio, retrieve image

Audio to Vision

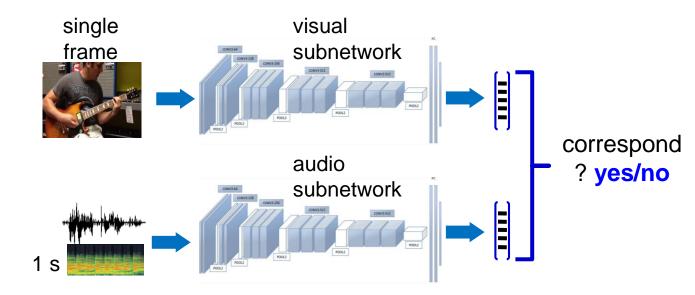
Query on image, retrieve audio

Search in 200k video clips of AudioSet

Top 10 ranked audio clips

Audio-visual joint embedding and localization

- Good representations
 - Visual features
 - Audio features
- Intra- and cross-modal retrieval
 - Aligned audio and visual embeddings
- "What is making the sound?"
 - Learn to localize objects that sound

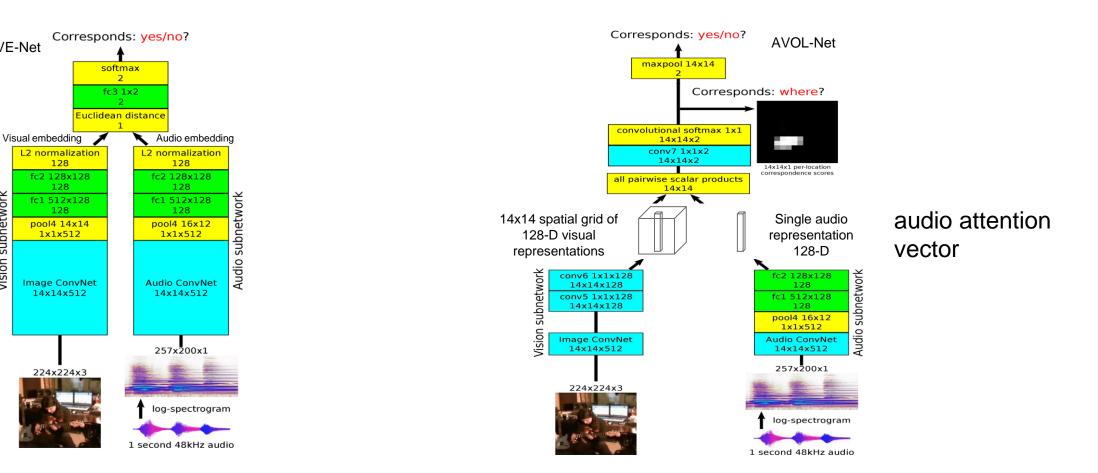


Applicable task 2: Audio-visual joint embedding and localization

AVE-Net

Vision subnetwork





Objects that Sound: object localization

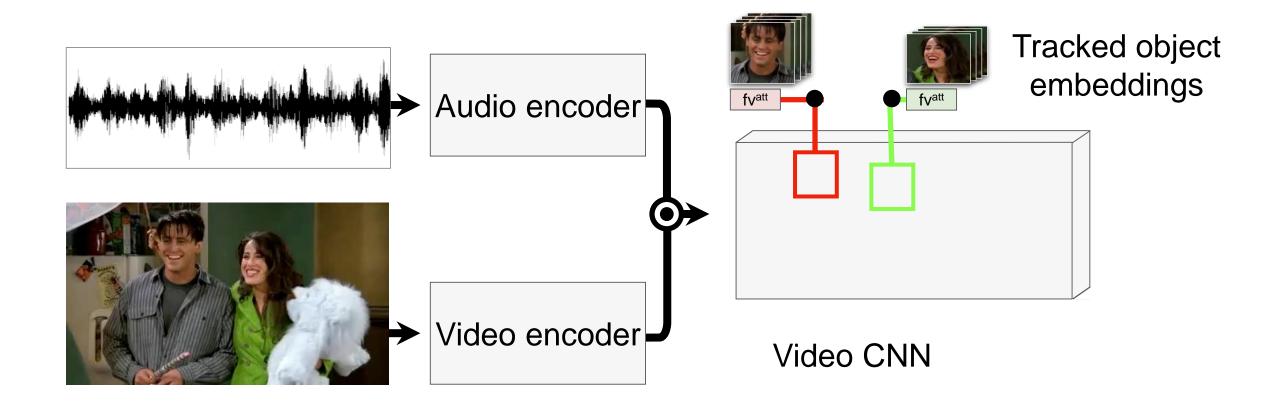
Input: audio and video frame

frame

frame+heatmap

heatmap

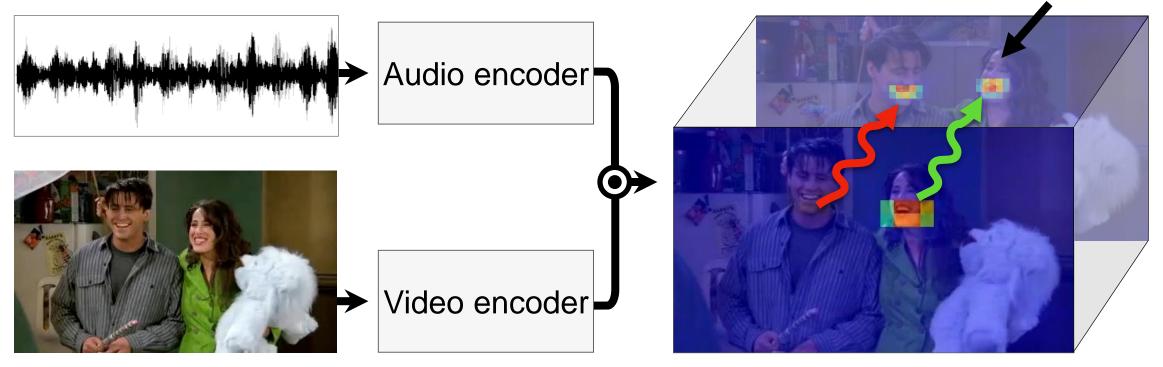
Applicable task 3: : obtain discrete audio-visual objects



Self-Supervised Learning of Audio-Visual Objects from Video T. Afouras, A. Owens, J. S. Chung, A. Zisserman, ECCV 2020

Applicable task 3: : obtain discrete audio-visual objects

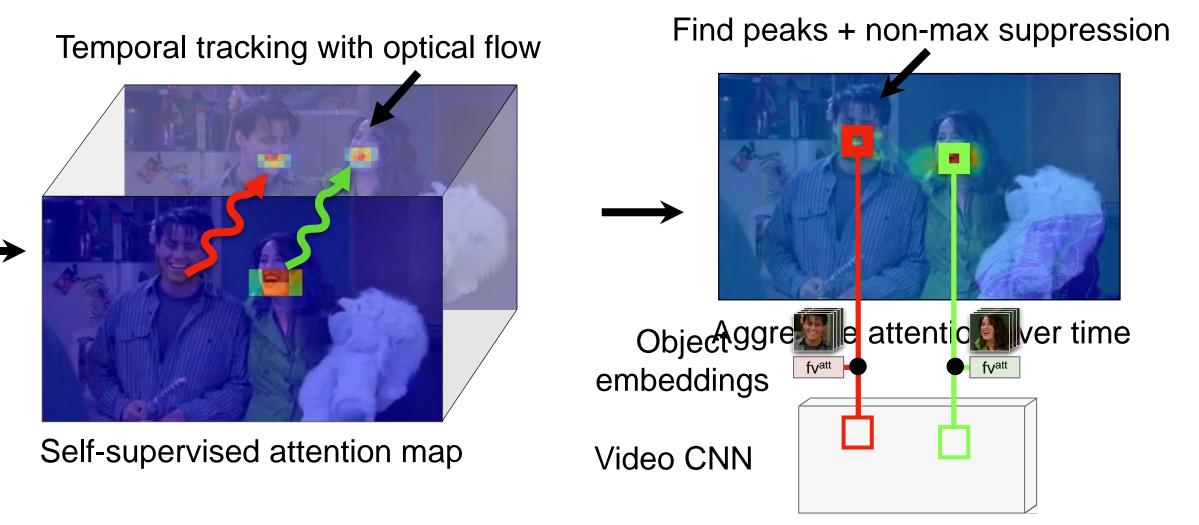
Temporal tracking with optical flow



Self-supervised attention map

Self-Supervised Learning of Audio-Visual Objects from Video T. Afouras, A. Owens, J. S. Chung, A. Zisserman, ECCV 2020

Applicable task 3: : obtain discrete audio-visual objects



Self-Supervised Learning of Audio-Visual Objects from Video T. Afouras, A. Owens, J. S. Chung, A. Zisserman, ECCV 2020

Learning the attention maps

- Contrastive loss:
- **Positive samples**: in sync
- **Negative samples**: out of sync (with temporal offset)

See also: [Chung & Zisserman 2016], [Owens & Efros 2018], [Arandjelović & Zisserman 2018], [Korbar et al. 2018]

Learning the attention maps

- Contrastive loss:
- **Positive samples**: in sync
- Negative samples: out of sync (with temporal offset)

See also: [Chung & Zisserman 2016], [Owens & Efros 2018], [Arandjelović & Zisserman 2018], [Korbar et al. 2018]

Learning the attention maps

- Contrastive loss:
- **Positive samples**: in sync
- Negative samples: out of sync (with temporal offset)

See also: [Chung & Zisserman 2016], [Owens & Efros 2018], [Arandjelović & Zisserman 2018], [Korbar et al. 2018]

Learning the attention maps

- Contrastive loss:
- **Positive samples**: in sync
- Negative samples: out of sync (with temporal offset)

See also: [Chung & Zisserman 2016], [Owens & Efros 2018], [Arandjelović & Zisserman 2018], [Korbar et al. 2018]

Audio-Visual Objects: tracking

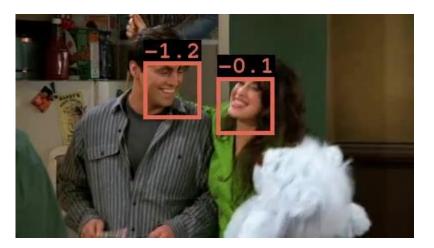
Examples from the LRS2 dataset

S_{AV} attention map

Audio-visual object

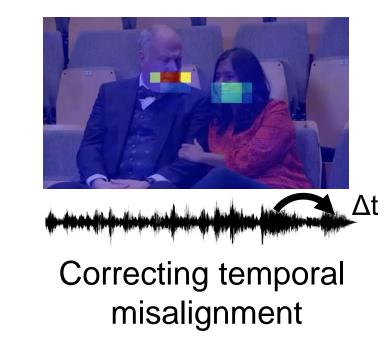
And have tracked visual embeddings for individual objects

Applications of audio-visual objects



Active speaker detection

Multi-speaker source separation



Active Speaker Detection

Examples from the *Friends* series

Blue = active speaker Red = inactive speaker

Adapting to new domains ...

• Since everything is self-supervised, just fine tune

Sesame Street

The Simpsons

Active Speaker Detection

Examples from Sesame Street

Blue = active speaker Red = inactive speaker

Active Speaker Detection

Examples from *The Simpsons*

Blue = active speaker Red = inactive speaker

Summary

- Self-supervision directly for applicable tasks (here discrete audio-visual object extraction)
- Many benefits accrue without having to train for them
 - Visual embedding vector for each object
 - Attention localization from audio
 - Use embedding vector for (more) downstream tasks, e.g. source separation
 - Plug and play for new videos of talking humans
 - Fine tune for non-human (same architecture, same self-supervised proxy)
- Compare to what we don't have to do
 - No two stage: representation learning then downstream
 - No face/head detector required
 - No prior grouping of faces into tracks
 - Video volume processed as a whole, rather than processing each face track

Part III

Roadmap: the three phases

Phase 1: the "classic" phase

• Replace strong supervision with self-supervision for representation learning

• Goals:

- develop proxy loss for training an image representation network on ImageNet, evaluate on downstream image tasks
- develop proxy loss for training a video representation network on Kinetics, evaluate on downstream video tasks
- Drop in replacement for supervised training
- Example proxy tasks for images: Context, Jigsaw, Colourization, Exemplars, RotNet, CPC, SimCLR, MoCo, BYOL
- Example proxy tasks for videos: Slowness, Shuffle&Learn, Order, Odd-One-Out, AoT, ST-Puzzle, DynamoNet, DPC, CBT, SpeedNet, MemDPC, CoCLR
- Datasets are balanced, so methods can take advantage of this

Phase 2: the expansion phase

- Applicable tasks, beyond representation learning, including: standard computer visions tasks like tracking, localization, segmentation; few-shot learning
- Multiple-modalities: audio, video, text, ... more opportunities for supervision
- Training on larger datasets
- More is better: more data, longer training, more proxy tasks, more depth/width in the network
- Datasets still tend to be curated: AudioSet, IG65M, YouTube8M, HowTo100M, ...
- Good examples of exploring the benefits of more data:
 - Scaling and Benchmarking Self-Supervised Visual Representation Learning, Priya Goyal, Dhruv Mahajan, Abhinav Gupta, Ishan Misra, <u>https://arxiv.org/abs/1905.01235</u>
 - Evolving Losses for Unlabeled Video Representation Learning, AJ Piergiovanni, Anelia Angelova, Michael Ryoo, CVPR 2020

Self-Supervised Learning

The Scientist in the Crib: What Early Learning Tells Us About the Mind by Alison Gopnik, Andrew N. Meltzoff and Patricia K. Kuhl

The Development of Embodied Cognition: Six Lessons from Babies by Linda Smith and Michael Gasser

Phase 3: The Uncurated phase

- Self-supervision from uncurated data, i.e. no pre-defined datasets, instead:
 - Random YouTube videos, so not class balanced, long tailed
 - Daily life videos, e.g. Vlogs, babycams,
- New learning schedules:
 - Curriculum learning
 - How to obtain informative (hard) samples?
- More ambitious tasks ... discrete objects, memory
- Universal networks: able to ingest multiple-modalities and carry out multiple tasks
- Curated datasets still have their uses: become new evaluation benchmarks

Summary

- Three phases of self-supervised learning
 - Classical
 - Expansion
 - Uncurated

Each stage has value for applications. Uncurated is less explored.

- Multiple-modality as free form of co-supervision in video
- Opportunity for learning more challenging applicable tasks