https://arxiv.org/abs/2401.14044

Joint work with Zhuang Liu, Saining Xie, Kaiming He

Diffusion Models for Self-Supervised Learning: A Deconstructive Journey

Xinlei Chen

ECCV 2024 Workshop on Self-Supervised Learning – What's Next?

facebook Artificial Intelligence Research

Diffusion Models for Generation

"An Al-Generated Picture Won an Art Prize. Artists Aren't Happy." https://openai.com/sora

Impressive Generation, but does it Understand?

What I cannot create, I do not understand

If your goal is to train a world model for recognition or planning, using pixel-level prediction is a terrible idea

So, how much do diffusion models understand?

Yann LeCun

Richard Feynman

Self-Supervised Learning (SSL)

• Pre-train representations without human annotated labels

SSL from Diffusion Models?

Every time step is essentially a *Denoising Auto-Encoder (DAE)* that does the underlying work

[Vincent et al, ICML 2008]

Classical Denoising Auto-Encoders (DAE)

[He et al, ECCV 2022]

Modern Denoising Diffusion Models (DDM)

Modern Denoising Diffusion Models (DDM)

Goal: Deconstruct DDM toward DAE

Modern DDM for Image Generation Classical DAE for Image Understanding

L-DAE: Outcome after Deconstruction

Modern DDM for Image Generation

latent-DAE for Image Understanding

adding noise in the low-dimensional *latent* space is crucial *l*-DAE: drastically closed the gap to existing working paradigms

Overview of the Deconstructive Journey

- 1. Initialization: DiT
- 2. Re-orienting DiT for SSL
- 3. Deconstructing the tokenizer
- 4. Toward classical DAE

[Peebles and Xie, ICCV 2023] [Esser et all, CVPR 2021]

1. Initialization: Diffusion Transformer (DiT)

- Transformer blocks for the autoencoder
- Another autoencoder (VQGAN) provides latent token space for denoising
- DiT-L overall, so DiT- $\frac{1}{2}$ L as encoder for linear probing

2b. Remove LPIPS loss in VQGAN

LPIPS: VGG features to approximate human perceptual similarity

Also not legitimate for SSL, as VGG is trained on ImageNet labels

Acc
$$\uparrow$$
62.5 \rightarrow 58.4FID \downarrow 30.9 \rightarrow 54.3

the label information can propagate very far

2c. Remove GAN loss in VQGAN

GAN: Generative Adversarial Network

Afterwards, VQGAN becomes Variational Auto-Encoder (VAE)

2d. Noise schedule change for image understanding

high-noise levels help generation but not understanding

3. Deconstructing the Tokenizer

Current tokenizer -- Convolutional VAE:

$$\|x - g(f(x))\|^2 + \mathbb{KL}[f(x)|\mathcal{N}]$$

Deconstruct it step-by-step:

- a) Patch-wise VAE, $||x U^T V x||^2 + \mathbb{KL}[V x | \mathcal{N}]$
- b) Patch-wise AE, $||x U^T V x||^2$
- c) Patch-wise PCA, $||x V^T V x||^2$

3. Deconstructing the Tokenizer

latent dimension of the tokenizer is *crucial*

specific variants of the tokenizer matter much less

16 or 32 dimensions are about optimal for 16x16 patches

What About Directly Resizing Patches?

latent dim per token (log-scale)

high-resolution, pixel-based DDMs are not great for SSL

4. Toward Classical DAE

After all the deconstructions so far, this old view still holds..

Can we get as close as possible to a classical DAE?

4. Signal vs. Noise Simplifications

hurts accuracy, but not as crucial as latent noise

4. DAE Directly on Pixels

4c. Pixel input with inv. PCA4d. Pixel output with inv. PCA4e. Original image as output

Summary: the Deconstructive Journey

- 2. Re-orienting DiT for SSL
- 3. Deconstructing the tokenizer
- 4. Toward classical DAE

Quantitative Ablations for I-DAE

• Time steps

	multiple	single
Acc ↑	64.5	61.5

a key diffusion design, but not so important for SSL

• Data augmentation

	center crop	random crop
Acc ↑	64.5	65.0

helps especially with longer training

Scaling Behaviors for *I*-DAE

• Training epoch

	400	800	1600
Acc ↑	65.0	67.5	69.6

• Model size

	ViT-B	ViT- $\frac{1}{2}$ L	ViT-L
Acc ↑	60.3	65.0	70.9

System-Level Comparison, Classification

pre-train	ViT-B	ViT-L
MoCo v3	76.7	77.6
MAE	68.0	75.8
I-DAE	66.6	75.0

pre-train	ViT-B	ViT-L
MoCo v3	83.2 84.1	
MAE	83.6	85.9
I-DAE	83.7	84.7

Linear Probing

Fine-Tuning

compared to DAE (20+ linear probe), /-DAE drastically closed the gap to MAE contrastive methods are generally better for linear probing autoencoders are generally better in fine-tuning

System-Level Comparison, Detection

pro troip	ViT-B		ViT-L	
pre-train	AP ^{box}	AP ^{mask}	AP box	AP ^{mask}
Supervised	47.6	42.4	49.6	43.8
MAE	51.2	45.5	54.6	48.6
I-DAE	51.6	45.8	54.4	48.2

I-DAE outperforms MAE in ViT-B, and significantly over supervised

[Lin et all, ECCV 2014] [Li et all, ECCV 2022]

xinleic.xyz

Denoising Diffusion Models for SSL

- Modern DDMs have reasonably good understandings of images
- More due to latent Denoising, and less to Diffusion: I-DAE
- I-DAE adds a standalone, clean alternative to current SSL methods
 - Joint-Encoder

• Auto-Encoder

MAE, *I*-DAE, ...