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Self Introduction
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Researcher at UC Berkeley, 
advised by Alyosha Efros, Jitendra 
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PhD degree at Johns Hopkins 
University advised by Alan Yuille.
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Scientific Question:
How far can we go from pixels alone?
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Self-Supervised Learning
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Pixels
(raw sensory data

Language, 
Semantics,
Concepts
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Self-Supervised Learning
• AKA: How to ‘torture’ both the model and yourself 

A Difficult task!
• Non-trivial.
• Absorb in large amount of data.



Self-supervised Learning

Pretext 
Task [1][2]

Discriminative
Contrastive 

Learning [3][4]

Generative
In-painting [5]

 / Masked Autoencoders [6]

[1] Zhang, Isola, and Efros. "Colorful image colorization." ECCV 2016.
[2] Doersch, Gupta, and Efros. "Unsupervised visual representation learning by context prediction." ICCV 2015.
[3] Wu, Xiong, Yu and Lin. "Unsupervised feature learning via non-parametric instance discrimination. " CVPR 2018.
[4] He, Fan, Wu, Xie and Girshick. "Momentum contrast for unsupervised visual representation learning. " CVPR 2020.
[5] Pathak, Krahenbuhl, Donahue, Darrell and Efros. "Context encoders: Feature learning by inpainting. " CVPR 2016.
[6] He, Chen, Xie, Li, Dollár and Girshick. "Masked autoencoders are scalable vision learners." CVPR 2022.

…



Masked Autoencoder (MAE) for Transformer 

Pathak, Krahenbuhl, Donahue, Darrell and Efros. "Context encoders: Feature learning by inpainting. " 
CVPR 2016.
He, Chen, Xie, Li, Dollár and Girshick. "Masked autoencoders are scalable vision learners." CVPR 2022.
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Sentence -> Visual Sentence
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Images with free form annotation

<BOS> <EOS>

<BOS> <EOS>

<EOS><BOS>



Videos with annotation

<EOS>

<BOS>



“Data! Data! Data! I can’t make bricks without clay!”  
   -- SHERLOCK HOLMES

Single images, e.g. LAION

Image sequences, 
e.g. videos, 3D 
rotations, synthetic 
viewpoints

Images with annotation, 
e.g. style transfer, object 
detection, low light 
enhancement

Images with free form 
annotation,
e.g. object detection + 
instance segmentation etc

Videos with 
annotation, 
e.g. video 
segmentation

Visual Sentences

UVD:
Unified Vision 

Dataset

420B tokens,
60s Datasets.

• Information
• Diversity



LVM: Large Vision Model
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tokens

VQGAN Decoder

VQGAN Encoder

Visual Sentence

Decoded Visual 
Sentence
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VQGAN Decoder
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VQGAN Encoder

   Autoregressive Vision Model



Training Loss (1 epoch) ~ Validation Loss



Larger Model, More Data, Better Downstreams.
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Sequential Prompting
Prompts Generated
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Analogy Prompting – Out of Domain Data

• edges
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More Difficult?

Generated

Hard to tell if correct or not 🤔



Perplexity
• 10 Questions:

• performed perplexity analysis on classic Raven 5-way multiple-choice 
Matrices, choosing the answer with lowest perplexity.

Raven’s Progressive 
Matrices

Chance 20%
Ours 30%

Generated Generated Generated Generated
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Synthetic Reasoning

• Size Change: choose from 2 random generated sizes. (resolution) 

size
Chance 50%

Ours 94%



Synthetic Reasoning

• In total 900 experiments

color shape size
Chance 33% 33% 50%
Ours 42% 45% 94%

Visual Prompting via Image Inpainting, Bar et al.



Failure Case
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What’s not satisfying to me, yet

• Data:
• Dataset distribution is so different from real life!

• Evaluations when things become more complicated.
• Imagine you are driving in a dark night, rainy, and a person just walked 

passed your window…
• Not a disentangled task.

• Training.
• Is it hard enough for self-supervised learning yet?
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Something to think about, maybe.

• ‘Supervised Training is an opium’.
• If ‘Supervised Training is an opium’, how about Language to 

Vision? 
• Do we bottom-up enough to fully unleash the power of visual 

data?



Thanks for listening

• Just a beginning.
• Despite this being one of the biggest 

vision models to date,  it is still very 
small in comparison with modern 
Large Language Models

Code, Model, Demo 
courtesy of 

Hugging Face


