From **Unsupervised Object Localization** to **Open-Vocabulary Semantic Segmentation**

Oriane Siméoni Meta FAIR (previously valeo.ai)

All works presented were done at valeo.ai

encoder

decode

Self-Supervised Learning

Learn image features **with no human-made annotation** using a **proxy task**

Self-supervised learning is great for **pre-training**

Efficiency in terms of number of epochs for ImageNet pretraining (SimCLR and DetCon do no use human annotated labels)

Data-efficiency of SSL and supervised learning methods

 14

3

But not only

Figure 1: Self-attention from a Vision Transformer with 8×8 patches trained with no supervision. We look at the self-attention of the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model automatically learns class-specific features leading to unsupervised object segmentations.

DINO [Caron et al. ICCV'21]

Supervised

DINO

- They have good localization properties
- Suffer fewer shortcuts than their fully-supervised counterparts

From

Unsupervised Object Localization to

Open-Vocabulary Semantic Segmentation

From

- **Unsupervised Object Localization** to
- **Open-Vocabulary Semantic Segmentation**

Self-attention maps

- The **6 heads** attend to **different parts** of an image
- Without supervision hard to distinguish **what is important** and is an object

[CLS] self-attention maps

Object localization in SSL similarity graph

SSL backbone

(here the keys of the last layer of DINO) **patch** features

Patch **correlations** to seed

Observations

- Features correlate semantically

Object localization in SSL similarity graph

SSL backbone

(here the keys of the last layer of DINO)

Observations

- Features correlate semantically
- When compute a binary similarity graph (nodes connected if cosine similarity >0)
	- **object patches are less connected than background**

patch features **Patch correlations** to seed

Patch **degree** low (yellow) to high (blue)

That's basically **LOST** [Siméoni et al., BMVC'21]

SSL backbone

(here the keys of the last layer of DINO)

LOST [Siméoni et al., BMVC'21]

- Compute a binary similarity graph (nodes connected if cosine similarity >0)
- **Object =** patch with the lowest degree & connected correlated patches
- Additional expansion step

patch features **patch correlations** to seed

Patch **degree** low (yellow) to high (blue)

Initial **seed**

Siméoni et al*.,* Localizing Objects with Self-Supervised Transformers and no Labels, BMVC'21

LOST qualitative results

Siméoni et al*.,* Localizing Objects with Self-Supervised Transformers and no Labels, BMVC'21

LOST quantitative results

Corloc metric = % of correct boxes \rightarrow a predicted box is correct if has IoU>0.5 with one of gt boxes

Previous **SoTA** were:

- **Region proposals** method (high recall, low precision)
- Methods based on **inter-image similarity**: dataset exploration often with quadratic costs

Then came more powerful algorithms

TokenCut [Wang et al. CVPR'22], **Deep Spectral Methods** [Melas-Kyriazi et al. CVPR'22], **SelfMask** [Shi et al. CVPRW'22]

- Same features, similar graph
- Solve a normalized graph-cut problem with **spectral clustering** → improved localization

CutLer [Wang et al. CVPR'23]

- Detect several objects
- Remove already discovered nodes from the graph and **repeat the operation**

More details/discussion in our recent **survey**:

Unsupervised Object Localization in the Era of Self-Supervised ViTs: A Survey, Siméoni et al., IJCV'24

Foreground / background unsupervised segmentation

FOUND [Siméoni et al., CVPR'23]

- **Look for the background instead of objects**
- No hypotheses about objects

Foreground / background unsupervised segmentation

FOUND [Siméoni et al., CVPR'23]

- **Look for the background instead of objects**
- No hypotheses about objects

Background mask:

- Seed = patch receiving least attention

Siméoni et al*.,* Unsupervised Object Localization: Observing the Background to Discover Objects, CVPR'23

Foreground / background unsupervised segmentation

FOUND [Siméoni et al., CVPR'23]

- **Look for the background instead of objects**
- No hypotheses about objects

Background mask:

- Seed = patch receiving least attention
- $Mask = correlated$ patches to seed

Generate **Background mask**

conv1x1

Foreground / background unsupervised segmentation

FOUND [Siméoni et al., CVPR'23]

- **Look for the background instead of objects**
- No hypotheses about objects

Background mask:

- Seed = patch receiving least attention
- $Mask = correlated$ patches to seed

FOUND = a single conv 1x1

- Trained using background masks as pseudo-labels
- **Bilateral Solver** (BS) used to refine masks along pixel edges

SSL backbone

K features **Predicted** mask

Siméoni et al., Unsupervised Object Localization: Observing the Background to Discover Objects, CVPR'23

Out-of-domain predictions (*no post-processing)*

FOUND [Siméoni et al., CVPR'23]

- **Single conv 1x1 layer trained with pseudo-labels**
- Trained for 500 it. on DUTS-TR [Wang et al, CVPR17] (10k images) ~ **2h with a single GPU**
- Inference at **80 FPS** on a V100

Quantitative results

- **Inference at 80 FPS** on a V100
- **<1000** learned **parameters**

Inference FPS

Siméoni et al*.,* Unsupervised Object Localization: Observing the Background to Discover Objects, CVPR'23

From

- **Unsupervised Object Localization** to
- **Open-Vocabulary Semantic Segmentation**

From **Unsupervised Object Localization** to

Open-Vocabulary Semantic Segmentation

Limits in the object localization task

Classic benchmarks **Closed vocabulary** setup

Limitation in the **definition** of the problem

● Requires the definition of a **finite** set of **classes**

Fully-supervised training

High costs

- **Expensive in money/time to get annotation**
- **For each new class: need new annotation +** re-training

Object detection

COCO [Lin et al. ECCV'14]

Instance segmentation

Global text/image alignment

- Powerful VLMs which **align text and images**
- **CLIP** [Ilharco et al. 21] trained with a **global** objective to **align** *text to images*
	- \rightarrow great zero-shot classification

However, going **from global to dense pixel** classification is **not obvious**

- very noisy (**MaskCLIP** [Zhou et al. ECCV'22]),
- require training (**TCL** [Cha et al. CVPR'23], **CLIPpy** [Ranasinghe et al. ICCV'23]), extra annotation, etc..

MaskCLIP: pixel-level CLIP-like features

MaskCLIP [Zhou et al. ECCV'22]

- No training
- Drops the global pooling layer of CLIP
- Matches the projected features directly to text via a 1×1 convolution layer.

Any way to **leverage SSL** ?

MaskCLIP: pixel-level CLIP-like features

- **- CLIP-DINOiser** [Wysoczanska et al., ECCV'24]

- Idea: Strengthen **MaskCLIP** using SSL correlation

- Idea: Strengthen **MaskCLIP** using SSL correlation
- **- Guided pooling =** weighted average of pixel features
	- weights = SSL correlations
	- only correlation > threshold

CLIP-DINOiser [Wysoczanska et al., ECCV'24]

- Idea: Strengthen **MaskCLIP** using SSL correlation
- **- Guided pooling =** weighted average of pixel features
	- weights = SSL correlations
	- only correlation > threshold

Teaching CLIP a **first DINO trick**

- **- CLIP-DINOiser** [Wysoczanska et al., ECCV'24]

- Idea: Strengthen **MaskCLIP** using SSL correlation
- **- Guided pooling =** weighted average of pixel features
	- weights = SSL correlations
	- only correlation > threshold

- Teach **CLIP a first trick**

- Single **conv3x3** trained to produce features w/ correlations *alike DINO's*
- Trained with a **BCE**
- ~40 mins on 1 NVIDIA A5000 and **1.5k images** (PASCAL VOC train)

CLIP already contains **good localization properties**

Teaching CLIP a **first DINO trick**

CLIP-DINOiser [Wysoczanska et al., ECCV'24]

- Idea: Strengthen **MaskCLIP** using SSL correlation
- **- Guided pooling =** weighted average of pixel features
	- weights = SSL correlations
	- only correlation > threshold
- Teach **CLIP a first trick**
	- Single **conv3x3** trained to produce features w/ correlations *alike DINO's*

Teaching CLIP a **first DINO trick**

CLIP-DINOiser [Wysoczanska et al., ECCV'24]

- Idea: Strengthen **MaskCLIP** using SSL correlation
- **- Guided pooling =** weighted average of pixel features
	- weights = SSL correlations
	- only correlation > threshold
- Teach **CLIP a first trick**
	- Single **conv3x3** trained to produce features w/ correlations *alike DINO's*

- **- CLIP-DINOiser** [Wysoczanska et al., ECCV'24]

- Idea: Strengthen **MaskCLIP** using SSL correlation
- **- Guided pooling =** weighted average of pixel features
	- weights = SSL correlations
	- only correlation > threshold
- Teach **CLIP a first trick**
	- Single **conv3x3** trained to produce features w/ correlations *alike DINO's*

- **- CLIP-DINOiser** [Wysoczanska et al., ECCV'24]

- Idea: Strengthen **MaskCLIP** using SSL correlation
- **- Guided pooling =** weighted average of pixel features
	- weights = SSL correlations
	- only correlation > threshold
- Teach **CLIP a first trick**
	- Single **conv3x3** trained to produce features w/ correlations *alike DINO's*

CLIP_{Img} **FOUND conv1x1**

- Teach **CLIP a second trick**
	- Foreground segmentation w/ **conv1x1** trained to mimic FOUND

- **- CLIP-DINOiser** [Wysoczanska et al., ECCV'24]

- Idea: Strengthen **MaskCLIP** using SSL correlation
- **- Guided pooling =** weighted average of pixel features
	- weights = SSL correlations
	- only correlation > threshold
- Teach **CLIP a first trick**
	- Single **conv3x3** trained to produce features w/ correlations *alike DINO's*
- Teach **CLIP a second trick**
	- Foreground segmentation w/ **conv1x1** trained to mimic FOUND

- **- CLIP-DINOiser** [Wysoczanska et al., ECCV'24]

- Idea: Strengthen **MaskCLIP** using SSL correlation
- **- Guided pooling =** weighted average of pixel features
	- weights = SSL correlations
	- only correlation > threshold
- Teach **CLIP a first trick**
	- Single **conv3x3** trained to produce features w/ correlations *alike DINO's*
- Teach **CLIP a second trick**
	- Foreground segmentation w/ **conv1x1** trained to mimic FOUND

- **- CLIP-DINOiser** [Wysoczanska et al., ECCV'24]

- Idea: Strengthen **MaskCLIP** using SSL correlation
- **- Guided pooling =** weighted average of pixel features
	- weights = SSL correlations
	- only correlation > threshold
- Teach **CLIP a first trick**
	- Single **conv3x3** trained to produce features w/ correlations *alike DINO's*
- Teach **CLIP a second trick**
	- Foreground segmentation w/ **conv1x1** trained to mimic FOUND

CLIP-DINOiser's qualitative results

CLIP-DINOiser's qualitative results

CLIP-DINOiser's qualitative results

green trees clouds mountains wooden table strange turtle plate city water

white horse dark horse

leather bag vintage bike

Going further

A Study of Test-time Contrastive Concepts for **Open-world, Open-vocabulary Semantic Segmentation**

Antonin Vobecky^{2,3,4} Amaia Cardiel 2,8 Monika Wysoczańska $1*$

Tomasz Trzejński 1,5,6 **Renaud Marlet**^{2,7} Andrei Bursuc² Oriane Siméoni²

¹Warsaw University of Technology \degree ²valeo.ai ³CIIRC CTU Prague \degree ⁴FEE CTU Prague 5 Tooploox 6 IDEAS NCBR 7 LIGM, Ecole des Ponts, Univ Gustave Eiffel ⁸Université Grenoble Alpes

Rethink the **evaluation paradigm** of the open-vocabulary semantic segmentation: new metric and removing access to an exhaustive set of classes

Oriane Siméoni @Self Supervised Learning: What is Next Workshop - ECCV'24

Where do we go from here?

Why do **we like self-supervision?**

- It requires **no annotation**
- Learns **strong representation**
	- For **pre-training**
	- Good **localization** properties
- No need to know the end task (often ill-defined)
- Not impacted by annotation biases
- Can be exploited at little cost eg. with **cheap convolutional layers**
- Localization of objects is possible and **classes can come later**

Remaining challenges

- How to handle the ill-definition of an object?
- Multi-instance?
- Handling granularity?
- Different representation for **end usage/tasks**?

