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The world runs on self-supervised learning

Unimodal SSL on

e images (e.g. DINOv2)
e text(e.g. GPT-3)

Multimodal SSL

e image-text (e.g. CLIP)
e video-audio (e.g. MMV)




The world runs on self-supervised learning

Unimodal SSL on

e images (e.g. DINOv2)
e text(e.g. GPT-3)

Multimodal SSL

e image-text (e.g. CLIP)
e video-audio (e.g. MMV)

... all rests on clever choices of data




The world runs on self-supervised learning + data curation

Image SSL with DINOv2: strong curation with eval data
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The world runs on self-supervised learning + data curation

Parthasarathy, 2023

Video SSL with VITO: curation with high-quality image prior
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The world runs on self-supervised learning + data curation

Gunasekar, 2023

Current LLM’s are highly dependent on data quality

51

Pass@]1 accuracy (%)
on HumanEval

350M, 26B tokens 350M, 76B tokens 1.3B, 51-76B tokens
(135 GPU hours) (410 GPU hours) (770-1090 GPU hours)
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The world runs on self-supervised learning + data curation

Dataset Pretraining Retrieving Eval.  Task Citation
(as is) pretraining
data,
ImageNet-1k X v v Classif. (Russakovsky et al., 2015) _ H H H H
et (Deng o a1 2009 Yet data-curation is currently a secretive & tedious process
ImageNet-V2 X X v Classif. (Recht et al., 2019)
ImageNet-ReaL X X v Classif. (Beyer et al., 2020)

é“ . M ” [y M ”
bmegNecA X X/ Gt (Hendksoial, 2010) e More “feature engineering” than “deep learning
ImageNet-C X X v Classif. (Hendrycks & Dietterich, 2019)

ImageNet-R X X v Classif. (Hendrycks et al., 2021a) . . . .
ImageNet-Sk. X X v Classif. (Wang et al., 2019) ([ ] LOtS Of d eta I IS h I dde n I n a p pe n d |Ces
Food-101 X v v Classif. (Bossard et al., 2014) . .
CIFAR-10 X v v Classif. (Krizhevsky et al., 2009)

CIFAR-100 X v v Classif. (Krizhevsky et al., 2009) g Hard to reprOduce SpeCIﬁC dataset VerSIonS
SUN397 X v v Classif. (Xiao et al., 2010)

StanfordCars X v v Classif. (Krause et al., 2013)

FGVC-Aircraft X v v Classif. (Maji et al., 2013)

VOC 2007 X v v Classif. (Everingham et al., 2010)

DTD X v v Classif. (Cimpoi et al., 2014)

Oxford Pets X v v Classif. (Parkhi et al., 2012)

Caltech101 X v v Classif. (Fei-Fei et al., 2004)

Flowers X v v Classif. (Nilsback & Zisserman, 2008)

CUB200 X v v Classif. (Welinder et al., 2010)

iNaturalist 2018 X X v Classif. (Van Horn et al., 2018)

iNaturalist 2021 X X v Classif. (Van Horn et al., 2021)

Places-205 X X v Classif. (Zhou et al., 2014)

UCF101 X X v Video (Soomro et al., 2012)

Kinetics-400 X X ' Video (Kay et al., 2017)

SSv2 X X v Video (Goyal et al., 2017)

GLD v2 v v X (Weyand et al., 2020)

R-Paris X v v Retrieval (Radenovic et al., 2018a)

R-Oxford X v v Retrieval (Radenovi¢ et al., 2018a)

Met X v v Retrieval (Ypsilantis et al., 2021)

Amstertime X v v Retrieval (Yildiz et al., 2022)

ADE20k X v v Seg. (Zhou et al., 2017)

Cityscapes X v v Seg. (Cordts et al., 2016)

VOC 2012 X v v Seg. (Everingham et al., 2010)

Mapillary SLS v X X (Warburg et al., 2020)

NYU-Depth V2 X v v Depth (Silberman et al., 2012)

KITTI X v v Depth (Geiger et al., 2013)

SUN-RGBD X v v Depth (Song et al., 2015)

DollarStreet X X v Fairness (De Vries et al., 2019)

Casual Conv. X X v Fairness (Hazirbas et al., 2021)




The world runs on self-supervised learning + data curation

Dataset Pretraining Retrieving Eval.  Task Citation

(as is) pretraining

data,

ImageNet-1k X v v Classif. (Russakovsky et al., 2015)
ImageNet-22k v v X (Deng et al., 2009)
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ImageNet-A X X v Classif. (Hendrycks et al., 2021b)
ImageNet-C X X v Classif. (Hendrycks & Dietterich, 2019)
ImageNet-R X X v Classif. (Hendrycks et al., 2021a)
ImageNet-Sk. X X v Classif. (Wang et al., 2019)
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Places-205 X X v Classif. (Zhou et al., 2014)
UCF101 X X v Video (Soomro et al., 2012)
Kinetics-400 X X v Video (Kay et al., 2017)
SSv2 X X v Video (Goyal et al., 2017)
GLD v2 v v X (Weyand et al., 2020)
R-Paris X v v Retrieval (Radenovic et al., 2018a)
R-Oxford X v v Retrieval (Radenovi¢ et al., 2018a)
Met X v v Retrieval (Ypsilantis et al., 2021)
Amstertime X v v Retrieval (Yildiz et al., 2022)
ADE20k X v v Seg. (Zhou et al., 2017)
Cityscapes X v v Seg. (Cordts et al., 2016)
VOC 2012 X v v Seg. (Everingham et al., 2010)
Mapillary SLS v X X (Warburg et al., 2020)
NYU-Depth V2 X v v Depth (Silberman et al., 2012)
KITTI X v v Depth (Geiger et al., 2013)
SUN-RGBD X v v Depth (Song et al., 2015)
DollarStreet X X v Fairness (De Vries et al., 2019)
Casual Conv. X X v Fairness (Hazirbas et al., 2021)

Yet data-curation is currently a secretive & tedious process

e More “feature engineering” than “deep learning”
e Lots of details hidden in appendices
e Hard to reproduce specific dataset versions

Let’s bring data curation to the front!

e Acceptitasintegral part of CV pipelines
e Own its details, allowing reproduction
e Same scientific rigor as architectures, objectives, optim

— simple, scalable methods for data curation!

— prime candidate: model-based data curation



Model-based data curation meets self-supervised learning

Model-based data curation

Small-scale,

clean data




Model-based data curation meets self-supervised learning

Model-based data curation

Simple, general
methods that
scale to large,
noisy datasets

Small-scale,
clean data



Model-based data curation meets self-supervised learning

Bad Students Make Great Teachers: Active Learning
Accelerates Large-Scale Visual Understanding

— builds a framework model-based data selection

e Which model-based criteria for data-selection?
e How to make data-selection tractable?



Model-based data curation meets self-supervised learning

Bad Students Make Great Teachers: Active Learning
Accelerates Large-Scale Visual Understanding

— builds a framework model-based data selection

e Which model-based criteria for data-selection?
e How to make data-selection tractable?

Data Curation with Joint Example Selection
Further Accelerates Multimodal Learning

— applies this framework to multimodal contrastive SSL

e Contrastive SSL enables joint example selection (JEST)
e JEST radically accelerates multimodal learning (10x)
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Model-based data curation: framework

Data curation with online batch selection: 1. Score super-batch

2.  Sub-sample batch according to these scores

3. Learn from sub-batch

(x)

pdata

Prioritised

: sampling [ .
B - Scoring B ' > Train Learner
Model ] Model

Google




Model-based data curation: criteria

Hard-learner: s"4(g;|0) = £(x;|)

— removes trivial examples, but emphasizes noise

(x)

pdata

Scoring |

Google




Model-based data curation: criteria

(x)

pdata

Scoring

Hard-learner: s"4(g;|0) = £(x;|)

— removes trivial examples, but emphasizes noise

Easy-reference: s**¥(x;|0) = —¢(x;|0) cf. CLIP-Score

— removes noise, but emphasizes trivial examples

Google



Model-based data curation: criteria

(x)

pdata

Scoring
B >

Hard-learner: s"4(g;|0) = £(x;|)

— removes trivial examples, but emphasizes noise

Easy-reference: s°*(x;|0) = —{(x;|0) cf. CLIP-Score

— removes noise, but emphasizes trivial examples

Learnability: '™ (x;|0%, 0%) = " (x;|0%) + s°*Y (x;|60*)

= 0(x;]0%) — £(]0%)

— emphasizes hard examples that get easy with more
compute (not trivial, not noisy)



Model-based data curation: criteria

Large-scale classification on JFT-300M

e Prioritize with
— 10% speed-up

e Prioritize easy reference
— 30% speed-up

e Prioritize with learnability
— 30% speed-up
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Model-based data curation: unlocking compute-positivity

Core intuition:
Curate data with small
models, train big ones

ViT-L IID

B-L
S-L
Ti-»L

Mu-L

data

Prioritised

Scoring

Learner Train
Fully amortized policy

Learner Train
Learner Train \ \
Learner Train L

Learner Train

sampling [ .
s b > Train Learner
L Model
A Pretrained ref. No amortization
, R} ¥ y
Online Score Online Train Ref Score Ref Train

> Foundation dataset



JFT Top-1 accuracy

Model-based data curation: unlocking compute-positivity
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75 —— VIiT-B trains ViT-L —— VIT-B trains ViT-L
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JFT Top-1 accuracy

Model-based data curation: unlocking compute-positivity
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Model-based data curation meets self-supervised learning

Bad Students Make Great Teachers: Active Learning
Accelerates Large-Scale Visual Understanding

— builds a framework model-based data selection

e Which model-based criteria for data-selection? — learnability!
e How to make data-selection tractable? — small models + generalizable policies!!



Model-based data curation meets self-supervised learning

Bad Students Make Great Teachers: Active Learning
Accelerates Large-Scale Visual Understanding

— builds a framework model-based data selection

e Which model-based criteria for data-selection?
e How to make data-selection tractable?

Data Curation with Joint Example Selection
Further Accelerates Multimodal Learning

— applies this framework to multimodal contrastive SSL

e Contrastive SSL enables joint example selection (JEST)
e JEST radically accelerates multimodal learning (10x)

80.0

77.51

NN
N oo
o O

70.01

67.5"

65.0;

Average Accuracy (%)

62.5

Flexi-JEST++
—— SigLIP 40B

60.0

1%

10% 100%
% Total FLOPS



Joint Example Selection Accelerates Multimodal Learning

e Model: multimodal contrastive learning with SigLIP
e Prior work: only focuses on independent data selection, i.e. diagonals of the contrastive matrix
e Intuition: contrastive loss depends on entire matrix, and matrix is clearly non-diagonal!

Image index

150
Image index Google



Joint Example Selection Accelerates Multimodal Learning

e Model: multimodal contrastive learning with SigLIP
e Prior work: only focuses on independent data selection, i.e. diagonals of the contrastive matrix
e Intuition: contrastive loss depends on entire matrix, and matrix is clearly non-diagonal!

o_
1.2 1.2
.__,/0
50 o 1.0 5.1.0 o/

= =
| 5 5

x © 0.8 © 0.8
3 100; S c
£ o o

) — 0.6 — 0.6
2 S S
© 150 ] ]

E 3 0.4 3 0.4/
o) e
: =] >

200 {4 5.2 U i3

—— Joint Example Selection
—— Brute Force Gibbs
250 Sl ik 5 TR : 0.0y ' : . . L b | ' '
0 50 100 150 200 250 100 10! 102 103 104 0.0 0.5 0.8 0.9

Image index Iterations Filtering ratio



Joint Example Selection Accelerates Multimodal Learning

e Model: multimodal contrastive learning with SigLIP
e Prior work: only focuses on independent data selection, i.e. diagonals of the contrastive matrix
e Intuition: contrastive loss depends on entire matrix, and matrix is clearly non-diagonal!

Jointly sampling learnable batches
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Joint Example Selection Accelerates Multimodal Learning

e Model: multimodal contrastive learning with SigLIP
e Prior work: only focuses on independent data selection, i.e. diagonals of the contrastive matrix
e Intuition: contrastive loss depends on entire matrix, and matrix is clearly non-diagonal!
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Joint Example Selection Accelerates Multimodal Learning

e Model: multimodal contrastive learning with SigLIP
e Prior work: only focuses on independent data selection, i.e. diagonals of the contrastive matrix
e Intuition: contrastive loss depends on entire matrix, and matrix is clearly non-diagonal!

Jointly sampling learnable batches o Prioritizing with Learnability 5 Prioritizing with Easy-reference
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Efficient scoring via online model approximation

e Data selection is expensive, cost scales linearly with amount of data rejected

e \We use the FlexiVit architecture to score data at low resolution

Resize '—l .
Score data at -— — )  Train at full
low resolution - Wi resolution
ew Patch Embedding A
Tokens . Tokens
Weights

Beyer et al. (2023)



Efficient scoring via online model approximation

e Data selection is expensive, cost scales linearly with amount of data rejected

e \We use the FlexiVit architecture to score data at low resolution
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Efficient scoring via online model approximation

e Data selection is expensive, cost scales linearly with amount of data rejected

e \We use the FlexiVit architecture to score data at low resolution
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Joint Example Selection Accelerates Multimodal Learning
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Data selection is expensive, cost scales linearly with amount of data rejected

We use the FlexiVit architecture to score data at low resolution
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Joint Example Selection Accelerates Multimodal Learning

Data selection is expensive, cost scales linearly with amount of data rejected

We use the FlexiVit architecture to score data at low resolution
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Joint Example Selection Accelerates Multimodal Learning

e Data selection is expensive, cost scales linearly with amount of data rejected

e \We use the FlexiVit architecture to score data at low resolution
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Model-based data curation meets self-supervised learning

Bad Students Make Great Teachers: Active Learning
Accelerates Large-Scale Visual Understanding

— builds a framework model-based data selection

e Which model-based criteria for data-selection?

e How to make data-selection tractable? talfan@ nikparth@ rtanno@

Data Curation with Joint Example Selection
Further Accelerates Multimodal Learning

— applies this framework to multimodal contrastive SSL

e Contrastive SSL enables joint example selection (JEST)
e JEST radically accelerates multimodal learning (10x)

hamzamerzic@ schwarzjn@ shreyapa@



Model-based data curation meets self-supervised learning

Bad Students Make Great Teachers: Active Learning
Accelerates Large-Scale Visual Understanding
— builds a framework model-based data selection

e Which model-based criteria for data-selection?
e How to make data-selection tractable?

Data Curation with Joint Example Selection
Further Accelerates Multimodal Learning
— applies this framework to multimodal contrastive SSL

e Contrastive SSL enables joint example selection (JEST)
e JEST radically accelerates multimodal learning (10x)




